Master equation method allows us to ignore the details of the microscopic equations yet capturing the properties of the system. The master equations describes the probability of states \(P_\xi(t)\) by looking into the gains and losses,
Food for thought
Matrix Form
It is obvious that the above formulation can be rewritten as a matrix equation,
But what is \(\hat{\mathbf T}\)? We rewrite (17) using the indices,
Comparing the above compoment form with (16), we can define \(\hat{\mathbf T}\) as
To summarize, if we force the sum of each column (i.e., second index) to be zero by redefining the diagonal elements, we get a nice matrix form of the master equation.
Suppose the states of a system are denoted as \(\xi\), and the probability of the states at time \(t\) are denoted as \(P_\xi(t)\). We assume the probability of the states at time \(t\) only depends on the probability of the states a moment ago,
This is the Chapman-Kolmogorov equation. The equation describes a randomwalk process, a.k.a. Markov process.
Markov Process and State Machine
The assumption that the current states doesn’t depend on the full history indicates that the system follows a fixed state diagram. In other words, we are using a state machine to approximate a statistical system, except that our physical system has an enormous amount of possible states.
It may sound weird that we only need the most recent history. However, a Markov process allows us to reach an desired equilibrium quickly.
The formalism of equation (18) reminds us of the time derivative,
Notice that
Why the normalization?
It is required that the probability of all the states at time \(t\) to be 1, \(\sum_\xi P_\xi(t) = 1\).
Substract from the Chapman-Kolmogorov equation a term \(P_\xi(t-\tau)\), we get
in which we have applied a variation of equation (19), i.e.,
We divide equation (20) by \(\tau\) on both sides and the limit of \(\tau\rightarrow 0\) is applied,
At first glance, the right hand side of the above equation goes to infinity. However, we do not expect the time derivative of a probability distribution to be infinite. That being said, there should be a specific relation between the two terms in the denominator. If we assume that
with \(n > 1\), the infinity is removed. This is a self-consistency condition so that our initial assumption that the system doesn’t depend the full history holds even for our infinitesimal relations.
It is werid.
By enforcing a system to obey Chapman-Kolmogorov equation, we admit that the system loses information before a short time interval \(\tau\). Now we take the limit \(\tau\rightarrow 0\), which means the system has no memory of the past at all! How is this possible?
We get the following differential form
Derivation of Master Equation “Rigorously”
Derivation of the master equation can be more rigorous. [1] This note references Reichl’s chapter 6 B and Irwin Oppenheim and Kurt E. Shuler’s paper. [2]
First of all we need the following conditional probability,
which means the probability of variable Y has value \(y_1\) at time \(t_1\) and \(y_2\) at time \(t_2\) is given by the probability of variable Y has value \(y_1\) at time \(t_1\) times that of it has value \(y_1\) at time \(t_1\) given it has value \(y_2\) at time \(t_2\).
Assume that the probability at \(t_n\) only depends on that at \(t_{n-1}\), we have
if the indices are arranged so that \(t_1<t_2< \cdots <t_n\).
This assumption indicates that the system is chaotic enough. This is called a Markov process.
Similar to the transition coefficients \(T_{\xi\mu}\) we defined previously, this \(P_{1|1}(y_{n-1},t_{n-1}|y_n,t_n)\) is the transition probability.
To find out the time derivative of \(P_1(y_2,t_2)\), we need to write down the time dependence of it,
We integrate over \(y_1\),
As we can write \(t_2=t_1+\tau\),
Next we can construct time derivatives of these quantities.
We expand the right hand side using Taylor series, the details of which can be found in Reichl’s book [1] , then we get a time derivative,
Equation (21) is the master equation.
The reason that \(W(y_1,y_2)\) is a transition rate is that it represents “the probability per unit time that the system changes from state \(y_1\) to \(y_2\) in the time interval \(t_1\rightarrow t_1 +\tau\) “. [1]
Is master equation the same as a Markov process?
In this derivation, we have used the Markov process. However, a master equation is not equivalent to a Markov process.
Read Irwin Oppenheim and Kurt E. Shuler’s paper for more details. [2]
Patterns in the Probabilities
We can find out the Chapman-Kolmogorov equation
by comparing the following three equations.
The are many application of the master equation
The master equations for a two-state degenerate system are
and
To solve the equations, we choose a set of “canonical coordinates”,
and
By adding the two original master equations, we have
and
Obviously, the solutions to these equations are
This result proves that whatever states was the system in initially, it will get to equilibrium since the term \(e^{-2R t}\) is a decaying process. This is a relaxation process.
Von Neumann equation
In QM, Von Neumann equations is
which is very similar to the solution to the stat mech Liouville equation,
where A is a matrix
The difference here is the \(i\) in the exponential. With \(i\), we get rotation or oscillation, while without \(i\), the process is a decay process.
In a non-degenerate two-state system, the transfer matrix is
The master equation is
The non-degenerate system shows similar exponential decaying or growing behaviors as in the degenerate system. However, the equilibrium point or fixed point is different.
shows that at equilibrium, i.e., \(\partial_t P_1 = 0\), the ratio of the probabilities is defined by the coefficients
© 2021, Lei Ma | Created with Sphinx and . | Source on GitHub | Physics Notebook Datumorphism | Index | Page Source