.. index:: Gaussian Integral Integrals =========== .. index:: Gaussian Integral Gaussian Intergral -------------------- The Gaussian integral is a handy tool for calculating/estimating integrals. .. math:: \int_{-\infty}^{\infty} e^{-ax^2} \mathrm dx = \sqrt{\frac{\pi}{a}} A comprehensive description of how this is done is `here `_. It is easier to solve the integral using polar coordinates. In general, we could define a more general form of the integral, .. math:: I_n(a) = \int_{0}^{\infty} e^{-ax^2} \mathrm dx. .. admonition:: A Practice of Symmetries :class: note The integral we just solved is .. math:: &\int_{-\infty}^{\infty} e^{-ax^2} \mathrm dx \\ =& \int_{0}^\infty e^{- a x^2} \mathrm dx + \int_{-\infty}^0 e^{-a x^2} \mathrm dx \\ =& I_0(a) - \int_{-x=\infty}^{-x=0} e^{-a (-x)^2} \mathrm d (-x) \\ =& I_0(a) + \int_{-x=0}^{-x=\infty} e^{-a (-x)^2} \mathrm d (-x) \\ =& I_0(a) + I_0(a) \\ =& 2 I_0(a) Another view of this is that we could investigate the symmetry of the expression :math:`I_n(a)`. By changing the sign of :math:`x`, we know that .. math:: &\int_{x=0}^{x=\infty} e^{-a(-x)^2} \mathrm d(-x) \\ =& \int_{-x=0}^{-x=-\infty} e^{-a (-x)^2} \mathrm d(-x) \\ =& -\int_{x=0}^{x=\infty} e^{-a x^2} \mathrm dx \\ = - I_n(a). Using this we could easily calculate the first integral.